KU4DSCZOO208: BIOCHEMISTRY

Semester	Course Type	Course Level	Course Code Credits		Credits	Total Hours
IV	DSC	200	KU4DSCZOO208		3+1	60
Learning Approach (Hours/ Week)		Marks Distribution			Duration of	
Theory/ Practical		CE	ESE	Total	ESE (Hours)	
Theory		3	25	50	75	1.5
Practical		2	10	15	25	-

Course Description:

Biochemistry is the branch of science that explores the chemical processes within and related to living organisms. This course provides an in-depth examination of the molecular mechanisms underlying biological functions, emphasizing the structure, function, and regulation of biomolecules. Students will gain a comprehensive understanding of the fundamental principles governing cellular processes and their significance in health and disease

Course Prerequisite:

Course Outcomes:

	Expected Outcome	Learning Domains
CO1	Understand how living things work at a molecular level, including how cells use molecules like proteins, carbohydrates, fats, and DNA.	U
CO2	Apply this knowledge to solve simple problems and understand common laboratory techniques used in biochemistry.	A
CO3	Appreciate the importance of biochemistry in fields like medicine, agriculture, and environmental science.	An
CO4	Communicate basic biochemical concepts clearly, both in writing and verbally.	A
CO5	To introduce students to the basic principles of biochemistry	U

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create

(C)Mapping of Course Outcomes to PSOs

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	0	0	3	3	1
CO2	0	0	3	3	0
CO3	2	0	3	3	2
CO4	0	0	2	3	0
CO5	0	0	1	3	0

COURSE CONTENTS

Module I: Biochemistry and the living state

(5 hr)

Unit I: Biochemistry and the living state

- 1.1 Mention micro, macro & trace elements/ mineral ions their biological significance.
- 1.2 Water molecular structure & dipolar nature, dissociation
- 1.3 Concept of pH, buffers
- 1.4 Henderson Hassel Bach equation; Biological functions of water.

Module II: Biomolecules

(17hr)

Unit I

- 2.1 Classification of carbohydrates, Biological functions of carbohydrates
- 2.2 Classification of amino acids
- 2.3 Peptide bonds
- 2.4 Structural levels of proteins primary, secondary, tertiary and quaternary structure.
- 2.5 Ramachandran plot.
- 2.6 Molecular chaperones.
- 2.7 Classification of proteins.
- 2.8 Biological importance of proteins and amino acids.

Unit II

- 2.9 Lipids. Basic structure and biological importance of lipids.
- 2.10 Classification of lipids.
 - 2.10.1 Simple lipids Fats, oils and waxes
 - 2.10.2 Compound lipids Phospholipids (lecithin, cephalin), Glycolipids (cerebrosides, gangliosides), Lipoproteins
 - 2.10.3 Derived Lipids Steroids (cholesterol)
 - 2.10.4 Prostaglandins.
- 2.11 Nucleotides, Biologically important Nucleotides. Structure and importance of ATP, cyclic AMP, UTP, NAD, NADP, FMN, FAD.

Module III: Enzymes and Vitamins

(10 hr)

Unit I: Enzymes and Functions

- 3.1 Enzymes- Classification and Nomenclature (IUB) 6 major classes.
- 3.2 Concept of active sites
- 3.3 Mechanism of enzyme action (lock and key & induced fit hypothesis)
- 3.4 Factors influencing the velocity of enzyme action- effect of pH, temperature, enzyme and substrate concentration
- 3.5 Regulation of enzyme action- activation and inhibition (competitive, non competitive, allosteric and feedback)

Unit II: Vitamins and biological importance

3.6 Fat soluble and Water soluble vitamins (vitamin B (Thiamine, Riboflavin, Niacin, Pantothenic acid, Cyanocobalamin, Folic acid, Pyridoxin) and C.

Module IV (13 Hours)

Unit 1

- 4.1 Basal metabolism- Calculation of BMR by Harris-Benedict formula;
- 4.2 Carbohydrate metabolism
 - 4.2.1 Glycolysis
 - 4.2.2 Glycogenolysis
 - 4.2.3 Glycogenesis
 - 4.2.4 Gluconeogenesis
 - 4.2.5 Pentose Phosphate pathway
 - 4.2.6 Kreb's cycle
- 4.3 Protein metabolism
 - 4.3.1 Deamination
 - 4.3.2 Transamination
 - 4.3.3 Decarboxylation
- 4.4 Lipid metabolism
 - 4.4.1 Oxidation of glycerol and fatty acids
 - 4.4.2 Biosynthesis of fatty acids (Structural details of metabolic pathways are not expected)

Unit II

4.5 Electron Transport System (ETS) and oxidative phosphorylation; Chemiosmotic hypothesis

Module V Practical (30 hours)

- 1. Qualitative tests for identification of carbohydrates, proteins and lipids.
- 2. To find the concentration of given solution using standard curve
- 3. Detection of abnormal constituents of urine (Glucose, albumin and ketone bodies
- 4. Separation of amino acids (or any other compounds) from a mixture by using
- 5. paper chromatography (Demonstration).
- 6. Detection of proteins: [Biuret test, Nitric acid test, Xanthoproteic test].
- 7. Detection of lipids: [Sudan III or IV test, Spot test].

Teacher Specific Module	9 Hours
Directions: 20 percent of the experiments can be modified by the course	
teacher	

Essential Readings:

- 1. David L. Nelson and Michael Cox (2012): Lehninger Principles of Biochemistry 6th Edition, ISBN-10: 1429234148, W.H. Freeman, 1328 pages
- David L. Nelson and Michael Cox (2017): Lehninger Principles of Biochemistry 7th Edition, ISBN-10: 1-4641-2611-9, W.H. Freeman, 1172 pages

- 3. David P. Plummer (2017)- Introduction to Practical Biochemistry, 3rd Edition, ISBN-10: 9780070994874, McGraw Hill Education, 498 pages
- 4. Donald Voet, Charlotte W. Pratt and Judith G. Voet (2001): Principles of Biochemistry 4th Edition, ISBN-10: 9780471417590, Wiley
- Geoffrey L Zubay (1999): Biochemistry 4th Edition, ISBN-10: 0697219003,
 Wm. C. Brown Publishers, 1104 pages

Suggested Readings:

- 1. Biochemistry" by Lubert Stryer et al.
- 2. Molecular Biology of the Cell" by Bruce Alberts et.al

Assessment Rubrics:

E	valuation Type	Marks		
		Theory	Practical	
1. End Semes	ter Evaluation	50	15	
2. Continuous	Evaluation	25	10	
	Continuous Evaluation			
Theory/Practical	Method of Assessment	Marks		
Theory				
a)	Test paper I	5		
b)	Test paper II	5		
c)	Viva-Voce/Seminar/ Discussion	10		
d)	Assignment	5		
		Total – 25 marks		
Practical				
a)	Regularity/Punctuality	5		
b)	Laboratory skill	5		
		Total – 10 marks		

