KU3DSCCHE215: CHEMISTRY OF BIOMOLECULES

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	200	KU3DSCCHE215	4	75

Learning	Marks Distribution				
Lecture/ Practical/ Internshi		CE	ESE	Total	Duration of ESE (Hours)
Tutorial 3	2	35	65	100	2

Course Description: The course demonstrates the structure of various biomolecules and the importance of stereochemistry on these structures. Also introduces various analytical techniques including spectroscopy.

Course Prerequisite: Basic idea in organic and biochemistry

Course Outcomes:

CO No.	Expected Outcome	
1	Understand the importance of stereochemistry of compounds in determining their properties.	U
2	Comprehensive understanding on the structure and properties of carbohydrates	U
3	Understand the structural properties of proteins, nucleic acids and enzymes	U
4	Understand the basic principles of spectroscopy and will be able to analyse the structure of various molecules using suitable spectroscopic technique.	An
5	Able to analyse inorganic and organic samples qualitatively	Α

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

Mapping of Course Outcomes to PSOs

					PSO 5		
CO 1	3	0	0	0	0	0	0
CO 2	0	3	0	0	0	0	0
CO 3	0	0	3	0	0	0	0
CO 4	0	0	0	3	0	0	0
CO 5	0	0	0	0	3	0	0

COURSE CONTENTS

Contents for Classroom Transaction:

M					
О	U		НО		
D	N	DESCRIPTION			
U	I				
L	T				
E					
	STE	REOCHEMISTRY	10		
1	1	Isomerism – general – stereoisomerism – optical isomerism – chirality – plane polarized light – specific rotation – enantiomers – racemization – diastereomers – optical activity of lactic acid and tartaric acid – meso tartaric acid – resolution			
	2	Conformational isomerism – ethane, propane and cyclohexane – chair and boat forms- stability – geometrical isomerism – causes – maleic acid and fumaric acid – 1-butene and 2-butene stability			
2	CAI	RBOHYDRATES	10		

	1	Introduction – Definition and classification. Preparation and properties of				
		Glucose, and Fructose (Fischer projection and Haworth structure of glucose				
		and fructose)				
	2	Mutarotation – Epimers and Anomers- D and L configuration				
	3	Cane sugar – Structure and important properties				
	4	Polysaccharides: Starch, Cellulose and Chitin – structure, properties and				
		tests				
	NU	CLEIC ACID, PROTEINS AND ENZYMES	15			
	1	Classification – Purine and pyrimidine bases - structure of DNA and RNA				
	2	Functions of Nucleic Acids – DNA replication				
	3	Bio synthesis of Proteins – Test for DNA and RNA. Effect of hydrogen				
		bonding in biological systems.				
3	4	Classification of Amino acids – Physical and Chemical Properties –				
		Zwitter ions – Iso Electric point – Sorensen formol titration –				
		Chromatographic separation of amino acids				
	5	Peptides – Proteins classification, Primary, Secondary and Tertiary level				
		structures of proteins – Tests for Proteins.				
	6	Enzymes-classifications-Mechanism of catalytic activity- Enzyme				
		inhibition.				
	BAS	SIC SPECTROSCOPY	10			
	1	Electromagnetic radiation, spectrum. Interaction with matter. Factors				
	affecting shape and intensity of a spectral line					
4	2	Absorption spectroscopy. Basic principle and application. Beer-Lamberts				
		law. Bathochromic, hypochromic and hyperchromic shifts.				
	3	Fluorescence and phosphorescence. IR spectroscopy. Principle and				
		application. Mass spectroscopy principle and application				

TEA	ACHER SPECIFIC MODULE -QUALITATIVE ANALYSIS	
Dire	ections: Total 7 experiments to be done. Analysis of a minimum of 6 cation	3
mixi	tures to be recorded. In addition to this any one experiment related to the	
thec	ory topics according to teachers' choice must also be done.	
1	Inorganic qualitative analysis of cations (NH ₄ ⁺ , Al ³⁺ , Zn ²⁺ , Mn ²⁺ , Ba ²⁺ , Ca ²⁺ ,	
	Mg^{2+})	
2	Open ended experiments(suggestions)	
	1.Detection of sugar and amino acids	
	2. Estimation of proteins by biuret method	
	3.Estimation of reducing sugar by DNS (3,5-dinitrosalicylic acid) method	

Essential Readings:

- 1. David L. Nelson and Michael M. Cox; Lehninger Principles of Biochemistry
- 2. M. K. Jain and S. C. Sharma; Modern Organic Chemistry, Visal Publishing Company Co.
- 3. B. S. Bahl; Advanced organic Chemistry, S. Chand.
- 4. J. Clayden, N. Greeves, S. Warren and P. Wothers; Organic Chemistry, Oxford University Press
- 5. C. N. Banwell and E M Mc Cash; Tata Mc GrawHill, Fundamentals of molecular spectroscopy
- 6. D. L. Pavia, G. M. Lampman and G. S. Kriz; Introduction to spectroscopy
- 7. A. I. Vogel; A Textbook of Quantitative Inorganic Analysis.
- 8. V.V. Ramanujan; Semi-micro qualitative analysis.

Assessment Rubrics:

Eva	luation Type	Marks
End Semeste	r Evaluation (ESE)	65 (50T+15P)
Continuous E	valuation (CCA)	35 (25T+10P)
Theory		25
a)	Test Paper*	10
b)	Assignment	5
c)	Viva-Voce	5
d)	Seminar	5
Practical		10
a)	Skill	4
b)	Record	4
c)	Punctuality	2
	Total	100

^{*}Average of best two test papers

Employability for the Course: The course enhances employability of the students by equipping them with essential knowledge and practical skills in chemistry